Fisika

Arus Bolak-Balik: Pengertian, Contoh, Manfaat, dan Bahayanya

Arus Bolak-Balik: Contoh, Manfaat, dan Bahaya yang Perlu Diketahui
Written by Kamal N

Arus Bolak-balik – Aplikasi rangkaian arus bolak-balik sebenarnya dapat dilihat pada cara kerja generator pembangkit listrik yang biasa digunakan ketika listrik di rumah sedang padam. Rangkaian arus bolak-balik ini juga dibagi menjadi beberapa jenis. Sebelumnya, kenali terlebih dahulu apa itu arus listrik. Arus listrik atau electric current merupakan sebuah aliran yang terjadi akibat jumlah muatan listrik yang mengalir dari satu titik ke titik lain, dalam suatu rangkaian tiap satuan waktu.

Dalam buku Permodelan Untuk Rangkaian Listrik karya A.M. Shiddiq Yunus dkk., berdasarkan arah alirannya, arus listrik terbagi menjadi dua jenis, yaitu arus searah dan arus bolak-balik. Arus searah atau yang dikenal juga direct current (DC) mengalir dari titik berpotensial tinggi menuju titik berpotensial rendah. Sementara itu, arus bolak-balik atau alternating current (AC) mengalir secara berubah-ubah dan mengikuti garis waktu.

Arus bolak-balik biasanya dimanfaatkan untuk peralatan elektronik. Untuk lebih mendalaminya, berikut pengertian dan jenis-jenis rangkaian arus bolak-balik yang dikutip dari berbagai sumber.

Pengertian Arus Bolak-Balik

Arus bolak-balik adalah arus listrik yang memiliki arah arus yang berubah-ubah secara bolak-balik. Sifat arus bolak-balik berbeda dengan arus searah yang arah arusnya tidak berubah-ubah terhadap waktu. Bentuk gelombang dari arus ini biasanya berbentuk gelombang sinusoida sehingga memungkinkan pengaliran energi secara efisien. Arus tersebut juga dapat mengalir dalam bentuk gelombang segitiga atau bentuk gelombang segi empat.

Diagram arus bolak-balik (garis hijau) dan arus searah (garis merah).

Secara umum, penyaluran listrik arus bolak-balik dari sumber listrik menuju ke kantor-kantor atau rumah-rumah penduduk. Arus ini juga dialirkan sebagai sinyal-sinyal radio atau audio yang disalurkan melalui kabel. Di dalam aplikasi-aplikasi ini, tujuan utama yang paling penting adalah pengambilan informasi yang termodulasi atau terkode di dalam sinyal arus bolak-balik tersebut.

Sejarah Penggunaan Arus Bolak-Balik

Pada tahun 1835, Hippolyte Pixii membuat pembangkit listrik arus bolak balik yang pertama. Pixii membuat alat tersebut dengan putaran magnet. Hingga tahun 1822, pembangkit listrik arus bolak-balik yang dibuat oleh Pixii tidak menarik perhatian para ilmuwan karena desain pembangkit listrik difokuskan pada pembangkit listrik arus searah.

Kajian tentang arus bolak-balik baru dimulai pada tahun 1882 dengan perkembangan yang pesat. Berbagai penemuan yang bersangkutan dengan listrik arus bolak-balik dilakukan oleh para ilmuwan kelistrikan seperti Thomas Alva Edison dan Nikola Tesla. Sebastian Ferranti dan Lord Kelvin akhirnya menciptakan teknologi pembangkit listrik arus bolak-balik dan transformator yang paling awal.

Sistem arus listrik bolak-balik pertama kali dibuat di Great Barrington, Massachusetts oleh William Stanley. Pembuatan sistem arus bolak-balik ini didukung oleh Westinghouse. Di saat yang bersamaan, Nikola Tesla juga memulai penjualan desain sistem listrik arus bolak-balik di New York.

Saat itu, New York telah mengadopsi sistem listrik arus searah sehingga penjualan sistem arus bolak-balik menjadi gagal. Pada tahun 1887, C.S. Bradley membuat generator arus bolak-balik 3 fasa yang merupakan alat yang membuat arus listrik bolak-balik lebih efisien sehingga dipakai sampai masa kini. Pada tahun 1900, generator bolak balik 3 fasa telah menjadi prinsip dasar sumber tenaga listrik di dunia.

Penggunaan arus bolak-balik mengalami perkembangan teknologi yang pesat serta kemudahan listrik arus bolak-balik dalam transmisi tenaga listrik dan distribusi tenaga listrik, menjadikan arus bolak-balik menjadi pesaing dari arus searah. Penyaluran tenaga listrik arus searah yang dimulai pada akhir abad ke-19 Masehi oleh Thomas Alva Edison kemudian digantikan oleh arus bolak-balik.

1. Sumber

Arus bolak-balik dapat dihasilkan menggunakan generator listrik dengan frekuensi rendah. Frekuensi pembangkitan listrik arus bolak-balik tidak lebih dari 1 kHz. Prinsip pembangkitan arus bolak-balik dilakukan dengan memanfaatkan prinsip elektromagnetisme. Dua kutub medan magnet ditempatkan pada sebuah kumparan dengan liltan konduktor. Medan magnet dan kuat arus listrik bolak-balik yang dihasilkan didasarkan pada luas permukaan kumparan.

2. Bentuk

Lampu-lampu kota yang dilihat dari kamera yang bergerak. Listrik arus bolak-balik menyebabkan lampu berkelip-kelip yang membuat garis terlihat menjadi bintik-bintik.

Gelombang sinus merupakan bentuk arus bolak-balik yang paling sederhana. Arus berbentuk gelombang sinus dihasilkan oleh beragam jenis pembangkit listrik yang menggunakan turbin sebagai penggerak rotor generatornya. Jenis pembangkit ini diantaranya ialah pembangkit listrik tenaga air, pembangkit listrik tenaga uap batu bara, pembangkit listrik tenaga angin, dan pembangkit listrik tenaga nuklir.


3. Satuan Pengukuran

Satuan pengukuran arus listrik yang digunakan secara internasional adalah Ampere. Standar satuan ini pertama kali ditetapkan pada tahun 1893 bersama dengan satuan Ohm dan satuan Volt. Hasil akhir dari pertemuan internasional tersebut adalah penetapan nilai dari satuan Amper internasional.

Ampere internasional dijelaskan sebagai jumlah arus listrik secara konstan yang mampu melalui larutan perak nitrat dalam air yang sesuai dengan spesifikasi standar. Pengendapan perak dilakukan dalam kecepatan 0,001118 gram per detik. Pada tanggal 1 Januari 1948 ditetapkan sebuah standar baru yang menjadi standar absolut hingga saat ini. Dalam standar absolut ditetapkan bahwa satu Ampere internasional sama dengan nilai dari 0,99835 ampere absolut.

Perumusan Arus Bolak-balik

1. Tegangan Listrik

Adanya arus bolak balik berarti tegangan listrik tersebut juga bolak-balik. Tegangan listrik bolak balik bisa direpresentasikan dengan formula ini:

,

Dimana

  • adalah puncak tegangan listrik (unit: volt).
  • adalah frekuensi sudut (unit: radians per detik).
  • Frekuensi sudut bisa disambungkan dengan frekuensi biasa, (unit = hertz), yang direpresentasikan dengan putaran per detik, dengan menggunakan formula .
  •   adalah waktu (unit: detik).

Jumlah puncak-ke-puncak tekanan bolak balik direpresentasikan dengan perbedaan antara puncak positif ke puncak negatif. tekanan puncak-ke-puncak bisa ditulis dengan hubungan or , yang bernilai.

2. Daya Listrik

Hubungan antara daya listrik dan tegangan listrik bolak-balik bisa direpresentasikan dengan:

dimana adalah hambatan muatan.

Dibandingkan dengan menggunakan hubungan, , Lebih efektif jika menggunakan hasil tengah-tengah (bila mana hasil tengah-tengah bisa didapatkan di manapun). Jadi, daya bolak balik bisa direpresentasikan oleh hasil tegangan rata-rata, ditulis dengan , menjadi

3. Daya Getar

Menggunakan Identitas trigonometri, tenaga osilasi menjadi dua kali lipat frekuensi oleh tekanan listrik.

4. Tegangan Rata-Rata

  • Untuk tegangan sinusoidal:
Faktor adalah faktor crest, yang berbeda di fungsi yang berbeda.
  • Untuk triangle waveform:
  • Untuk square waveform:
  • Untuk waveform dasar dengan period  :

Frekuensi Arus Bolak-Balik

Frekuensi sistem listrik berbeda-beda di negara yang berbeda, tetapi biasanya berkisar di antara 50-60 Hertz. Beberapa negara seperti Jepang mempunyai dua frekuensi listrik yang berbeda yaitu 50 Hz dan 60 Hz, tergantung dengan pembangkit listrik yang dipakai.

Frekuensi yang berkisar antara 50–60 Hz dipilih dengan alasan yang cukup masuk akal. Arus listrik dengan frekuensi rendah membuat pemakai listrik dengan motor elektrik lebih mudah. Terlebih dengan aplikasi yang berhubungan dengan traksi dari komutator, seperti di kasus rel kereta. Namun dengan memakai frekuensi yang rendah, akan terlihat kedipan di lampu yang sangat mengesalkan apalagi di lampu incandescent.


Penerapan Praktis Arus Bolak-Balik

1. Motor Listrik Arus Bolak-Balik

Motor listrik arus bolak balik menggunakan arus listrik yang memiliki prinsip kerja yang membalikkan arahnya secara teratur pada rentang waktu tertentu. Bagian dasar dari motor listrik ini yaitu stator dan rotor. Stator merupakan tempat berputarnya rotor, sedangkan rotor merupakan komponen listrik yang berputar untuk memutar poros motor.

Motor listrik arus bolak-balik mengatasi kelemahan motor arus searah yaitu kecepatan yang sulit dikendalikan. Motor arus bolak-balik dilengkapi dengan sebuah penggerak yang bernama frekuensi variabel yang berfungsi untuk meningkatkan kendali kecepatan sekaligus menurunkan penggunaan daya listrik.

2. Motor Induksi

Sistem kelistrikan modern dimulai ketika motor induksi menggunakan arus bolak-balik. Penggunaan arus bolak-balik pada motor induksi dilakukan pertama kali oleh Nikola Tesla. Arus bolak-balik menjadi penggerak dari rotor pada motor arus bolak-balik. Rotor terletak di bagian dalam motor dan merupakan bagian yang dapat berputar. Perputaran rotor terjadi karena adanya torsi yang bekerja pada porosnya. Torsi dihasilkan oleh medan magnet yang berputar akibat arus bolak-balik.

Motor listrik arus bolak balik telah digunakan pada peralatan listrik rumah tangga seperti mesin cuci, kipas angin, dan penyejuk udara. Di dalam proses kontrol gerak pada industri, motor induksi merupakan motor listrik yang paling umum digunakan. Motor induksi arus bolak-balik memiliki desain yang sederhana dengan tingkat pemeliharaan yang rendah. Sumber tegangan listrik untuk melakukan kerja pada motor listrik dapat diperoleh secara langsung melalui sumber listrik arus bolak-balik yang tersedia di dalam instalasi listrik bangunan.

3. Motor Sinkron

Motor sinkron termasuk dalam motor listrik yang menggunakan sumber arus listrik bolak-balik. Cara kerja motor dimulai dari pemberian tegangan pada kumparan stator dengan sistem 3 fasa. Pemberian tegangan menghasilkan fluks magnet putar dan menimbulkan gaya gerak listrik pada kumparan stator. Perputaran secara terus-menerus meghasilkan fluks magnet putar yang memotong kumparan setiap saat.

Fluks putar yang dihasilkan oleh arus bolak-balik tidak seluruhnya dihasilkan pada kumparan stator. Pada kumparan stator timbul fluks bocor yang dinyatakan dengan hambatan armatur dan reaktansi armatur. Kumparan rotor terletak antara kutub magnet utara dan kutub magnet selatan sehingga mempunyai fluks magnet. Kedua fluks magnet tersebut akan saling berinteraksi dan mengakibatkan rotor berputar. Perputaran rotor sama dengan kecepatan pemberian fluks magnet putar dari stator.

4. Transformator

Transformator atau trafo merupakan salah satu alat yang memiliki prinsip kerja mampu mengkonversi dari arus bolak-balik ke arus searah dengan cara memindahkan tenaga listrik arus bolak-balik antar dua lilitan kawat atau lebih melalui induksi elektromagnetik. Prinsip transformator ini membuat transformator menjadi salah satu alat yang mempunyai keunggulan dari alat lain.

5. Kendali Motor Arus Bolak-Balik

Dalam kendali motor arus bolak-balik, transformator berperan untuk mengurangi tegangan pada terminal motor selama periode percepatan, cara ini dinamakan pengasutan autotransformator. Motor arus bolak-balik membutuhkan arus mula yang sangat besar sehingga dibutuhkan suatu cara agar motor ini mampu bekerja secara efektif dan efesien. Selama pengasutan dengan pereduksian tegangan, motor itu terhubung ke tap-tap pada autotransformator.

Tegangan mulai yang rendah membuat motor tersebut menarik arus listrik yang lebih sedikit dan menghasilkan torsi yang lebih sedikit dibandingkan jika ia terhubung langsung dengan tegangan jala-jala. Perpindahan tegangan dapat diatur pada suatu relai jika perpindahannya mengalami pengurangan tegangan tegangan total. Suatu relai yang sensitif terhadap arus mungkin digunakan untuk mengendalikan perpindahan untuk memperoleh percepatan aru secara terbatas.

6. Strukur Transformator

transformator_scheme_ru.svg

Rumus untuk fluks magnet yang ditimbulkan lilitan primer adalah dan rumus untuk ggl. induksi yang terjadi di lilitan sekunder adalah . Karena kedua kumparan dihubungkan dengan fluks yang sama, maka

Dengan menyusun ulang persamaan akan didapat . Dari rumus-rumus di atas, didapat pula Dengan kata lain, hubungan antara tegangan primer dengan tegangan sekunder ditentukan oleh perbandingan jumlah lilitan primer dengan lilitan sekunder.

Bahaya Arus Bolak-Balik

Arus bolak-balik dengan nilai hingga 10 Ampere tidak dapat membahayakan manusia selama tidak menyentuh dan mengalir ke tubuh. Sebaliknya, arus ini dengan rentang antara 10 hingga 100 miliampere dan memiliki frekuensi rendah dapat menyebabkan kematian jika bersentuhan langsung dengan tubuh manusia. Ambang batas frekuensi yang tidak membahayakan tubuh manusia ialah 105 Hz. Panas yang dihasilkan oleh arus listrik tersebut juga dapat menembus sedalam beberapa milimeter ke permukaan kulit dan merusaknya. Arus dengan frekuensi tinggi dapat menghasilkan panas yang dapat merusak organ tubuh yang paling dalam.

Contoh Soal Tentang Arus Bolak Balik

Agar lebih mendalami materi di atas, berikut contoh soal dan pembahasannya yang diambil dari buku Sumber Tegangan Listrik: Sejarah, Prinsip Kerja, dan Penerapannya karangan Trigonggo hingga situs fisikaonline.com.

Soal 1
Sebuah generator menghasilkan tegangan sinusoidal dengan persamaan V = 200 sin 200t. Berapa nilai dari Vmax dan frekuensi tegangan?
Pembahasan:

Diketahui:

V = 200 sin 200t

Penyelesaian:

Persamaan umum tegangan AC

V = V max sin ωt

Dari sini dapat disimpulkan, bahwa tegangan maksimum atau V max bernilai 200 V.

ω = 200

2 pi f = 200

f = 100/pi

f = 31.81 Hz

Jadi, frekuensi gelombang tersebut bernilai 31.81 Hz.
Soal 2
Sebuah benda yang dapat bergerak mampu menghasilkan tegangan maksimal sebesar 200 V. Benda tersebut membentuk sudut yang besarnya 300 dalam periode waktu yang dibutuhkan yaitu 60 sekon. Dari benda tersebut, berapakah tegangan sinusoidal yang terjadi?
Pembahasan:
Diketahui:

Tegangan maksimal atau V max = 200 V

Sudut atau W = 300

Waktu atau t = 60 s

Ditanya:
  • Berapa tegangan sinusoidal benda tersebut?
Jawab:

V = V max x sin W x t

= 200 x sin 300 x 60

= 600 V

Jadi, tegangan sinusoidal benda tersebut adalah 600 Volt.
Soal 3
Sebuah trafo step-up kumparan primernya terdiri atas 50 lilitan dan kumparan sekundernya 100 lilitan. Jika tegangan primernya 110 V, berapakah tegangan pada kumparan sekundernya?
Penyelesaian:
Diketahui:

Np = 50 lilitan

Ns= 100 lilitan

Vp = 110 V

Ditanyakan:
  • Vs = ?
Jawab:
Jadi, tegangan pada kumparan sekunder adalah 220 V.

Demikian pembahasan mengenai pengertian arus bolak-balik, contoh, manfaat, dan bahaya yang perlu diketahui. Ingin belajar lebih lanjut mengenai ilmu pengetahuan alam dengan integrasi teknologi terkini? Gramedia percaya dengan kekuatan sistem integrasi dapat memastikan bahwa setiap siswa dikembangkan dan dididik secara holistik – mulai dari akademis hingga pembentukan karakter dan menumbuhkan kecintaan belajar seumur hidup.

Rekomendasi Buku & Artikel Terkait

Referensi

BACA JUGA:

About the author

Kamal N

Ada banyak pelajaran yang dipelajari ketika di sekolah, salah satunya adalah fisika. Ilmu fisika ini juga sering kita temukan dalam kehidupan sehari-hari.